18 research outputs found

    Monitoring and improving oxygenation of organs, cells, and tissue engineered grafts

    Get PDF
    University of Minnesota Ph.D. dissertation. December 2015. Major: Biophysical Sciences and Medical Physics. Advisors: Michael Garwood, Klearchos Papas. 1 computer file (PDF); xxi, 449 pages.Oxygen is vital to the survival of many living things, and evolution has provided the human body with a complex cardiovascular system to ensure that all of the cells in the body are provided with adequate oxygen. Achieving adequate oxygen delivery remains of critical importance to the clinical management of many human diseases and has been the impetus for the development of many medical procedures and technologies. Despite much advancement in the understanding about oxygen delivery in the body, the current inability to attain life-sustaining levels of tissue oxygenation remains the major limitation for the emerging fields of cell, tissue, and organ replacement. There is a large body of research focused on developing methods to improve vascularization and oxygen supply for transplanted cells, tissues and organs, and this substantial challenge will require an interdisciplinary approach utilizing both engineering principles and a broad understanding of the physical science. The islet transplantation process can be divided into three critical steps: tissue procurement and preservation; isolation, culture and shipment; and graft transplantation and monitoring. To begin, whole organ oxygen consumption rate (WOOCR) measurements are presented for the assessment of organ viability, followed by the description of new techniques for improving the efficacy of pancreas cooling during procurement, and the use of hypothermic machine perfusion (HMP) to improve pancreas preservation. These methods can be used to qualify biological tissue products and to evaluate and improve organ procurement and preservation. Next, HMP combined with silicon-rubber-membrane (SRM) culture systems are presented as techniques to improve the quality of tissues isolated from juvenile porcine pancreata, and advanced nutrient supplementation with suspension culture systems are shown to improve β-cell expansion. Finally, 19F-MRS oximetry techniques are presented for non-invasive oxygen monitoring of tissue-engineered grafts (TEGs), and these techniques are further applied to develop, implement, and validate a novel method for oxygen delivery to an implanted tissue-engineered islet grafts

    Nutrient regulation by continuous feeding removes limitations on cell yield in the large-scale expansion of Mammalian cell spheroids.

    Get PDF
    Cellular therapies are emerging as a standard approach for the treatment of several diseases. However, realizing the promise of cellular therapies across the full range of treatable disorders will require large-scale, controlled, reproducible culture methods. Bioreactor systems offer the scale-up and monitoring needed, but standard stirred bioreactor cultures do not allow for the real-time regulation of key nutrients in the medium. In this study, β-TC6 insulinoma cells were aggregated and cultured for 3 weeks as a model of manufacturing a mammalian cell product. Cell expansion rates and medium nutrient levels were compared in static, stirred suspension bioreactors (SSB), and continuously fed (CF) SSB. While SSB cultures facilitated increased culture volumes, no increase in cell yields were observed, partly due to limitations in key nutrients, which were consumed by the cultures between feedings, such as glucose. Even when glucose levels were increased to prevent depletion between feedings, dramatic fluctuations in glucose levels were observed. Continuous feeding eliminated fluctuations and improved cell expansion when compared with both static and SSB culture methods. Further improvements in growth rates were observed after adjusting the feed rate based on calculated nutrient depletion, which maintained physiological glucose levels for the duration of the expansion. Adjusting the feed rate in a continuous medium replacement system can maintain the consistent nutrient levels required for the large-scale application of many cell products. Continuously fed bioreactor systems combined with nutrient regulation can be used to improve the yield and reproducibility of mammalian cells for biological products and cellular therapies and will facilitate the translation of cell culture from the research lab to clinical applications

    Fluctuations in medium nutrient levels contributed to limitations in cell expansion.

    No full text
    <p>Glucose measurements from β-TC6 cell spheroids cultured in (A) Static cultures, and (B) stirred suspension bioreactors using high (4.5 g/L), intermediate (2.75 g/L), and low (1.0 g/L) glucose medium, as depicted by their position on the Y axis. The physiological glucose range is indicated by the grey bar. Error bars for glucose measurements are too small to be visible on the scale shown (Standard Error ≤4% for all measurements). (C) No difference was seen comparing static to SSB cultures with any of the glucose levels. Comparison of expansion of β-TC6 spheroid cultures indicated that changing the glucose in the medium to achieve levels closer to the physiological range did not significantly improve cell expansion. (*indicates a p value of 0.027 compared with the same culture method using high glucose medium.) SSB: stirred suspension bioreactor.</p

    Stirred suspension bioreactors offered no growth improvement compared to static cultures.

    No full text
    <p>Fold expansion of β-TC6 spheroids after twenty one days compared stirred suspension bioreactor to static culture using standard high glucose medium.</p

    Adjusting culture medium feed rate regulates glucose concentrations and improves cell growth compared to continuous feeding at a constant rate.

    No full text
    <p>(<b>A</b>) Cell counts comparing constant feed rate to adjusted feed rate from the same cultures (*represents a p value <0.05 indicating a significant difference in culture expansion). (<b>B</b>) Average culture medium glucose levels from 21 day constant feeding, and adjusted feeding bioreactor cultures. The physiological glucose range is indicated by the grey bar. Error bars for glucose measurements are too small to be visible on the scale shown (Standard Error ≤4% for all measurements).</p

    Continuously fed SSB eliminated glucose fluctuations and improved cell expansion.

    No full text
    <p>(<b>A</b>) Glucose measurements for β-TC6 spheroid culture medium using static, SSB, and CF-SSB culture methods and feeding with standard high glucose medium. The physiological glucose range is indicated by the grey bar. Error bars for glucose measurements are too small to be visible on the scale shown (Standard Error ≤4% for all measurements). (<b>B</b>) Fold Expansion of β-TC6 spheroids over 21 days of culture comparing static, SSB, and CF culture methods. SSB: stirred suspension bioreactor. CF: Continuously fed stirred suspension bioreactor.</p
    corecore